Observations on the Layout of Iron Age Samaria

Israel Finkelstein
Tel Aviv University

The article deals with the topography, extent and layout of Iron Age Samaria. It raises the possibility that the 9th century BCE city covered an area of ca. 8 hectares, and comprised two main components: an upper platform that consisted of a royal compound on the summit and a lower platform that surrounded it on all sides. Both were created by constructing massive support walls and laying fills behind them.

Keywords Samaria, Omride dynasty, Northern Kingdom

The study of Iron Age Samaria—by both the Harvard and Joint Expeditions—focused on the royal casemate compound with the remains of the palace on the summit of the hill. The construction of the royal compound is dated to the days of the Omrides (Reisner et al. 1924; Crowfoot et al. 1942; Kenyon 1971; Ussishkin 1997, 2007; Finkelstein 2000; see Franklin 2004 for a somewhat different view). Sporadic Iron Age remains unearthed below the royal compound—to the south of and under the Roman basilica (Reisner et al. 1924: 64–65, Plan 12; Crowfoot et al. 1942: 18–21), under the Roman forum (Crowfoot et al. 1942: 20), possibly under the Roman western gate (Reisner et al. 1924: 120–121, Plans 10–11; Crowfoot et al. 1942: 18–20) and under the colonnaded street (Crowfoot et al. 1942: 20)—led the excavators to propose that the Iron Age city spread across an area almost as large as the Herodian city, and that it was protected by a city wall (Crowfoot et al. 1942: 20–21; but see Kenyon 1971: 82, arguing that “the capital was administrative only”). The conventional wisdom understood 9th century Samaria as encompassing the royal compound on the summit (e.g., Tappy 2001: 170) and attributed the maximal expansion of the site to the first half of the 8th century BCE—a time of unparalleled prosperity in the Northern Kingdom. Ussishkin (1997: 358) estimated the size of the 9th century city at 23–28 acres (ca. 10–12 hectares).

In what follows I present several observation regarding the topography, extent and layout of Iron Age Samaria. My observations are based on recent visits to the site, on what can be deduced from aerial photographs, including Google Earth and on comparisons with other Omride sites. Regarding the latter, the excavations of Jezreel (Ussishkin and Woodhead 1992, 1994, 1997; Ussishkin 1997) paved the way for a better understanding.
of Omride architecture (Finkelstein 2000), including at sites east of the Jordan River (Finkelstein and Lipschits 2010); this, in turn, drew my attention back to Samaria.

In the main, I wish to propose the possibility that the sector of the site that shows characteristics of Omride architecture was four times larger than the ca. 2.5–3 hectare royal casemate compound on the summit of the hill. In other words, I would argue that Omride Samaria was comprised of two parts: a large lower town characterized by major earthworks (henceforth called ‘the lower platform’) spanning ca. 450 m from west to east and (a maximum of) 230 m from south to north; and the ‘upper platform’ with its royal podium, constructed on the summit, in the centre of the former (Figs. 1–2). The two parts are man-made, in the sense that the natural hill was reshaped in order to accommodate the site. Needless to say, without renewed investigation in the field, the observations below remain hypothetical.

The site

The South

This is the side of the site that was the first to attract my attention, and which supplies the most detailed information.

Towering over the colonnaded street, to its north, is a major earthen slope, up to 20–30 m high and ca. 400 m long (Figs. 3–5, labelled “cliff” in Reisner et al. 1924: Plan 2). It is too steep and too straight in line to be considered a strictly natural phenomenon, and therefore should be interpreted as a man-made earthwork. On its eastern side, the southern earthwork ends somewhat to the east of the elevated royal compound. In the west it ends ca. 120 m from the Roman period western gate. The earthwork was built ca. 40 m to the south of the casemate wall of the royal compound; on this side the separation between the upper platform and the lower area is clear only near the western end of the former (Reisner et al. 1924: Plan 2; Pl. 16). It is reasonable to assume that in the Iron Age, the level of floors in the royal compound was ca. 10 m higher than those in the lower platform (section in Fig. 6; pictures in Reisner et al. 1924: Pl. 16). In its western sector, the southern slope of the royal compound ran over 10 m away from the casemate wall (Reisner et al. 1924: Plan 4 lower left); further to the east the casemate wall may have stood at the edge of the upper platform (see ibid.: Plan 2, Squares F/16–17).

The southern earthwork was probably laid along a rock scarp (described by Reisner et al. 1924 as “cliff”, e.g., 86 and Plan 2), or at least a steep slope of the natural rock of the hill, which can be seen popping out here and there. The southern earthwork dominates—in fact shapes—the entire site, and can be seen from afar (see photograph in Crowfoot et al. 1942: frontispiece). It has a moderate angle in the centre, along its west-east axis. This was probably planned in order to diminish the scope of the filling operations needed to create the lower platform—the angle seems to have enabled the builders to adhere to the line of the natural rock scarp.

Crowfoot et al.’s description of the colonnaded street below and to the south of the southern earthwork is telling: The street “ran through a sort of a gully; the main hill rose precipitously on the north, on the south there was an extensive outcrop of
Figure 1 General map depicting the topography of Samaria (Reisner et al. 1924: Plan 1).
rock which still rises high above the top of the columns. It was on the north, contrary to our expectations, that the rock was lowest; we found an artificial filling under the rooms which fringed that side of the street” (1942: 50). At Khirbet Mudeineh eth-Themed in Moab, which should be identified with Jahaz mentioned in the Mesha Inscription, a broad moat (to differ from a narrow ditch) surrounds the rectangular casemate platform which forms the site (Finkelstein and Lipschits 2010; aerial views in http://www.flickr.com/search/?q=Mudayna&w=36925516%40N05). Accordingly, the depression below the colonnaded street may have been a moat, the cutting of which could have supplied much of the material for the southern earthwork and the fills laid inside the lower platform.

The southern side of the hill provides the only excavated clue for the method of construction of the lower platform. A strong stone wall, described as 8–10 m wide (Reisner et al. 1924: 86, 121–122; the section which had been excavated was interpreted as the outer part of the wall, 3 m wide, built against a vertical cutting of the rock—idem: 121 and Plans 3; see section in Fig. 6) was unearthed in the course of the Harvard excavations in Square J/20 in the southern end of the ‘Lower Terrace’, that is, at the top of the southern earthwork (Reisner et al. 1924: Plans 1–3). Its bossed stones were set in headers and stretchers (idem: 121–122) and its foundations were sunk in a trench cut in the rock. These are characteristics of the method of Iron Age construction in the royal compound (e.g., Crowfoot et al. 1942: 5–6) and hence the identification of the wall at the edge of the lower platform as belonging to the Iron Age building activity can hardly be disputed.
Foundations of Iron Age walls were found on bedrock in the area of the ‘Lower Terrace’ to the north of the great wall, but it is reasonable to assume that the floors were higher, and that they rested on an earthen fill that levelled the terrace (Fig. 6).

The West

On this side, today’s edge of the upper platform (the royal compound) is clear and impressive. The elevation difference between today’s upper and lower platforms is ca. 20 m (Fig. 7). According to the Harvard excavations, inside the royal compound bedrock is about eight m lower than the modern surface. Had the lower platform been occupied in the Iron Age, there too the level would be lower than the surface today. In other words, the difference between the upper and lower platforms would still be significant. The western slope of today’s upper platform is located ca. 18 m to the west of the royal compound’s casemate wall (leaving enough space for a large building [Harvard’s “palace of Jeroboam II”—Reisner *et al.* 1924: 117–119] to be constructed outside the southwestern corner of the royal compound) and six m to the west of the Hellenistic fortification (Reisner *et al.* 1924: Plan 2, picture of Trench E—a section dug in this terrace in Pl. 88: b). Section G-H of the Harvard report (*ibid.*: Plan 4) seems to indicate that the Iron Age slope was located in the same line as the modern one. This slope too must have been formed by laying earth over the natural rock. The distance between the casemate wall and the slope is noteworthy. It seems to indicate that the casemate wall did not serve as an outer fortification system.

About 70 m to the west of the western edge of the royal compound, and exactly in line with the western end of the southern earthwork, there is another prominent terrace line, ca. 150 m long from south to north (Fig. 8). It runs in a straight line in its southern
sector and is slightly curved in the north. The connection between this terrace and the southern earthwork suggests that the western limit of the lower platform must have run approximately along this line (see more below).

The North

The line of the upper platform (Fig. 9) is clear, though it is probably not homogeneous. In its western sector the original line of the Iron Age casemates and the Hellenistic fortification was extended further to the north in order to support the courtyard of the Herodian Augusteum (Netzer 1987). The current slope runs ca. 25 m to the north of the Iron Age casemates (Reisner et al. 1924: Plan 2). The eastern sector of the northern line runs closer to the Hellenistic fortification, ca. 15 m north of the Iron Age casemate wall. Judging from the situation in the south and west, this should indeed be the original distance between the casemates and the Iron Age slope (for Iron Age construction in this space, see Crowfoot et al. 1942: 16–17, Pl. I, No. 14).

The northern line of the lower area, which should connect to the western terrace, is not clear. It may be the terrace which delineates the rural road which goes from west to east—to the area of the Roman theatre, or the somewhat lower terrace which runs a few metres further to the north (for Iron Age remains found here, see Crowfoot et al. 1942: 20, Pl. 1, No. 26). The situation in the northwest is also not clear. Either the corner of the lower platform was eroded by the small wadi that runs to the north, or no right angle existed here in the first place—because of the small wadi.

Figure 4 The southern earthwork, looking from its top to the west.
Here too the situation is not sufficiently clear. The slope on this side is more moderate and it is reasonable to assume that the gate to the royal compound was located here. It seems that the lower platform connected to the upper one via a ramp that led to this supposed gate (Crowfoot et al. 1942: 14, Pl. II; aerial view in Fig. 10). All six Proto-Ionic capitals known from Samaria were found in this part of the site (ibid.: 14; Shiloh 1979: 7–8); they may have been installed in a gate, in a similar way to the (somewhat later) gate at Mudeibi in southern Jordan (Mattingly and Pace 2007). Judging from the eastern end of the southern earthwork, the original line of the lower platform may be indicated by a moderate terrace located about 50 m west of the Roman basilica. The gate to the lower platform should also have been located on this side. The walls identified by the excavators as belonging to a gate (Crowfoot et al. 1942: 18–20) seem to be somewhat too far to the east, unless the eastern line of the lower platform ran further to the east and was blurred by later occupation of the site. What is said below regarding the possible location of a moat strengthens the latter alternative.

The eastern side of Samaria is the more vulnerable—the ridge connects here to the hill and the approach was made even more moderate by the above-mentioned entryway to the upper, royal compound. Judging from the widespread use of moats in Omride sites—in Jezreel, Khirbet Mudeineh eth-Themed, Khirbet Atarus = Ataroth and possibly Hazor (Finkelstein 2000; Finkelstein and Lipschits 2010; Oredsson 2000)—one can speculate that the eastern approach to Samaria was protected by a moat that cut the ridge in its flat, narrowest point, possibly somewhere under the Roman basilica. This saddle in the ridge had once been much
Figure 6 Schematic topographic-architectural section through the upper and lower platforms, close to the line of Section A-B in Reisner and Fisher Plan 2 (Alexander Pechuro).
narrower than today; it was reshaped—levelled and filled—in Roman times (Crowfoot et al. 1942: 2, 55), and hence it is impossible to detect its layout in the Iron Age.

Discussion

Is it possible that the lower platform, including the impressive southern earthwork, is a post-Iron Age, Hellenistic or Roman phenomenon? Excavations of several squares in the northwestern sector of the site in 1968 reached bedrock but did not reveal Iron Age remains (Hennessy 1970). The excavator describes the location of the squares as “above the 410 metre contour” (idem: 1), but it is difficult to establish the relation between the elevation contours and the terraces, and from the map too (idem: Fig. 1) it is difficult to determine the exact location of these squares. Still, it seems that they were dug within the area of what is described here as the lower platform, close to its western terrace. If this evidence is not a result of strong post-Iron Age building activity and disturbances, typical of Samaria (e.g., Wright 1959: 69), it may stand in contrast to the dating of the lower platform to the Iron Age. Yet, the massive city wall at the southern edge of the Harvard excavation “Lower Terrace”, built in a method characteristic of Israelite Samaria, provides a different perspective. This wall, which was part of the original shaping of the lower platform, unequivocally dates the southern earthwork to the Iron Age. Hence, the western part of the lower platform, which connects to the southern earthwork, should also date to the Iron Age. This evidence is strengthened by the finding of Iron Age remains on the lower platform to the north of the Augusteum (Crowfoot et al. 1942: Pl. I, No. 26). One possibility of explaining the contradiction between these pieces of evidence and the Hennessy results is to argue that today’s western terrace is the Hellenistic one, and that
the Iron Age terrace lies a few metres to the east—similar to the situation in the upper platform (e.g., Reisner et al. 1924: Plan 2).

From the broader perspective, though on the whole I believe that the topography of the site still preserves the layout of the Iron Age city, some alternations can be detected, for example the extension of the upper platform to the north in order to make space for the courtyard of the Augusteum (also, compare the modern surface and the ancient structures in the sections—Reisner et al. 1924: Plans 3–4).

The dating of the upper platform (the royal compound), including the casemates, to the days of the Omride dynasty was strengthened by the results of the excavations at Jezreel (Ussishkin and Woodhead 1994, 1997; Franklin’s construction phases [2004] do not stand against this dating). Assuming that the lower platform is an Iron Age creation, when was it built? There are two options here. According to the first, in the time of the Omrides the site was limited to the royal compound; Samaria was extended to the lines of the outer, lower platform in the first half of the 8th century BCE—a period of great prosperity in the Northern Kingdom. According to the second option, both the upper and lower platforms were constructed in the 9th century BCE; in the 8th century the site could have extended further down the slopes, in the direction of the Roman fortifications. The limited data from the excavation of the Harvard team in their Lower Terrace does not provide sufficient chronological information for deciding between these alternatives. The first option may be supported by the possibility that key Omride sites were no more than fortified administrative strongholds. This can be the interpretation of sites such as Jezreel, Stratum X at Hazor, and Khirbet Mudeineh eth-Themed and Khirbet Atarus in Moab (Ussishkin 1997; Finkelstein 2000; Finkelstein and Lipschits 2010). Yet, Samaria, as the capital of the Northern Kingdom, may have been a different case.
Indeed, circumstantial considerations lead me to prefer the second option—that the lower platform too was constructed in the 9th century BCE. First, the 8th century BCE city must have been larger than the ca. 8 hectares of the upper and lower platforms combined, e.g., compared to Jerusalem of the late 8th century, which stretched across an area of over 60 hectares, or even to Hazor, which covered ca. 12 hectares. Second, it is logical to assume that Omride Samaria was at least as big as Omride Jezreel, which covered an area of ca. 4 hectares (compared to 2.5–3 hectares of the royal compound at Samaria; the Omride compound at Hazor on the far northern end of the kingdom also covered ca. 2.5 hectares). Third, as I have already noted above, podium construction, with terracing, filling and levelling, is typical of Omride architectural concepts. Fourth, the fact that the casemate wall of the summit was not built on the edge of the upper platform hints that it did not serve as an outer city-wall. In other words, in the Iron Age the upper platform was not protected by a fortification.

As for the function of the site, I would suggest that the two platforms served different purposes: the upper one served as the royal compound, with the palace, a possible royal shrine, official administrative buildings and open spaces, while the lower platform

![Aerial view, looking southwest](image-url)
functioned as the town proper, with habitation quarters for the officials who served the bureaucratic apparatus of the kingdom.

From the architectural point of view, it is difficult to find comparisons to the unique layout of Samaria—two platforms built one on top of the other—first and foremost because of the special location of the site in a hilly terrain and second, because it was not built over an existing Bronze Age mound. As far as newly founded cities in hilly areas of the Levant go, the closest parallel which comes to mind is Buseirah in Edom, which seems to feature an elevated administrative compound at the edge of a lower platform (see Bienkowski 2002: 37–38, Pl. 1.1, 1.2). But Buseirah was constructed about a century and half after Samaria, under strong and direct Assyrian influence. From the conceptual point of view the layout of Samaria could have been influenced by northern sites which feature an acropolis in the centre of a lower town—first and foremost Zincirli (recently Schloen and Fink 2009). Another Iron Age site in the Levant that may portray a similar concept (but not similar architecture)—though on a much smaller scale—is Lachish, where an elevated residency was constructed in the late Iron IIA (second half of the 9th century—Herzog and Singer Avitz 2004; Finkelstein and Piasetzky 2010) in the centre of the city (Ussishkin 2004: 78–82).

Needless to say, the reconstruction of the layout of Omride Samaria suggested here is hypothetical. It can be verified or rejected only by renewed, modern-method excavation of the site.
Summary

Based on observations on the ground, aerial views of the site and comparative material at other Omride sites, I suggest that Omride Samaria included two components:

(1) The upper casemate platform (the royal compound) on the summit of the hill. This compound was surrounded (at least in the west, southwest and north) by a strip of ca. 15 m of additional space, which means that: (A) the upper platform extended over a somewhat larger area than the conventional view (ca. 3 rather than 2.5 hectares); (B) the casemates did not serve a defensive purpose; there is no additional Iron Age city-wall at the edge of the upper platform.

(2) The lower platform, ca. 8 hectares in size, which extends from the upper platform to all sides. Judging from the results of the Harvard team in the Lower Terrace, the lower platform was protected by a strong fortification. It seems that the lower platform was surrounded by a moat, at least on its south and east.

The construction of the two platforms involved the building of support walls as well as major filling operations. The result was an awe-inspiring artificial hill that could have been seen from afar.

Acknowledgment

This article was prepared with the help of the Chaim Katzman Archaeology Fund.

References

